Yuyao Ruihua Nneɛma a Wɔde Yɛ Adwuma .

Please Choose Your Language

   Ɔsom kwan: 

 (+86) 13736048924

Wowɔ ha: Fie » Nsɛm ne nsɛm a esisi . » Nnwuma ho amanneɛbɔ . » 2025 Nneɛma a wɔyɛ ho mfiridwuma ho nsɛm: Ɛsɛ sɛ wɔn a wɔtɔn nneɛma no hu daakye .

2025 Manufacturing Technology Trends: Ɛsɛ sɛ wɔn a wɔtɔn nneɛma no yɛ daakye ho nhyehyɛe .

Views: 2     Ɔkyerɛwfo: Site Editor Publish Time: 2025-09-12 Mfiase: Beaeɛ

Bisa .

Facebook kyɛfa bɔtn .
Twitter so kyɛfa bɔtn .
Line kyɛfa bɔtn .
WeChat kyɛfa bɔtn .
LinkedIn kyɛfa bɔtn .
Pinterest kyɛfa bɔtn .
WhatsApp Kyɛfa bɔtn .
Kyɛ saa kyɛfa bɔtn no mu .

Nneɛma a wɔyɛ wɔ afe 2025 mu no yɛ nea AI-a ɛma ɛyɛ adwuma wɔ ɔkwan a ɛyɛ adwuma so, adwumayɛbea a ɛyɛ nyansa a wɔde ka bom, ne adetɔnfo a wɔyɛ adwuma wɔ ɔkwan a ɛfata so a ɛde adwumayɛ mu nkɔso a wotumi susuw ba no na ɛkyerɛ ase. Ne 71% a wɔyɛ AI ano aduru anaa wɔde di dwuma no, akansi asase no asesa akɔ nhyiam ase a ɛka bere ankasa mu nhwehwɛmu, nkɔmhyɛ a wɔde siesie, ne ERP nkabom a ɛnyɛ hwee bom.

Saa akwankyerɛ a ɛkɔ akyiri yi hwehwɛ mfiridwuma mu adetɔnfo atitiriw a wɔresan asiesie nneɛma a wɔyɛ no mu, efi wɔn a wɔde asɛnka agua so a wɔde ma te sɛ Siemens ne GE a wɔatew wɔn ho so kosi AI-centric disruptors a ɛreba te sɛ Ruihua Hardware so. Yɛbɛhwehwɛ sɛdeɛ macro-economic factors, digital twin implementations, ne adwumayɛfoɔ nsakraeɛ akwan no rema vendor selection gyinaesie a ɛka adwumayɛ mu mmɔdenbɔ, nneɛma a wɔde ma no ahoɔden, ne akansi a ɛbɛtena hɔ akyɛ.

Asase a ɛresakra: efi nnwuma 4.0 so kosi AI-Driven adwinnan so .

Sikasɛm mu kar akɛse a wɔde yɛ adwuma a wɔde yɛ mfiridwuma ho nhyehyɛe wɔ afe 2025 mu .

Wiase nyinaa nneɛma a wɔyɛ ho adwene wɔ afe 2025 mu no da sikasɛm tebea a adi afra a ɛwɔ nkɛntɛnso tẽẽ wɔ mfiridwuma mu sikasɛm ho gyinaesi ahorow so adi. Mprempren PMI akenkan kyerɛ sɛ U.S. wɔ 49.5, Europa wɔ 49.8, India wɔ 59.2, ne Japan wɔ 48.8, a ɛkyerɛ sɛ ɛsono ɔmantam no mu nneɛma a wɔyɛ no mu dwumadi ahorow.

PMI (Purchasing Managers’ Index) yɛ sikasɛm mu kyerɛwtohɔ a wɔde susuw nneɛma a wɔyɛ no dwumadi, baabi a akenkan a ɛboro 50 kyerɛ ntrɛwmu na ɛba fam sen 50 no kyerɛ sɛ ɛtwetwe. Saa metrics yi ma mfiridwuma ho nimdeɛ a wɔde bɛto gua no yɛ adwuma yiye bere a wɔn a wɔyɛ adwuma wɔ apam gua so no twe adwene si ano aduru a ɛma adwumayɛ yɛ yiye so.

Tow a ɛrekɔ soro wɔ U.S. adwumayɛfo so no ama adwene a wɔde asi nneɛma a wɔyɛ so wɔ adwumayɛ mu denam automation ne AI a wɔde di dwuma so no mu ayɛ den. Nnwumakuw de mfiridwuma ho nimdeɛ a ɛma adwumayɛ mu mmɔdenbɔ a ɛkɔ so ntɛm ara ne ɛka a wɔtew so no di kan de siw nhyɛso a ɛfa aguadi ho ano.

AI agyede akontaabu ne adwumayɛ mu nkɛntɛnso .

AI a wɔfa wɔ nneɛma a wɔyɛ mu no adu baabi a ɛho hia kɛse, a . 71% a wɔyɛ adwuma no de AI ano aduru di dwuma denneennen anaasɛ wɔde di dwuma. Eyi mu paapae yɛ 27% mprempren a wɔde di dwuma ne 44% wɔ active implementation phases mu, a ɛkyerɛ sɛ wogye AI tumi a ɛsakra no tom kɛse.

Adwumayɛ mu nsunsuansoɔ no yɛ dodoɔ: AI a wɔfa no bɔ amanneɛ sɛ sika a wɔnya no nkɔsoɔ 9.1% ne mfasoɔ nkɔsoɔ 9.1% sɛ wɔde toto wɔn a wɔnyɛ adopters ho wɔ 7.3% sika a wɔnya ne mfasoɔ nkɔsoɔ 7.6%. Saa adwumayɛ mu nsonsonoeɛ yi ma akansi nhyɛsoɔ ba mfiridwuma ho nimdeɛ a wɔfa wɔ nnwuma no mu nyinaa.

Ɛmfa ho sɛ wɔfaa wɔn sɛ wɔn mma no dodow a ɛkɔ soro no, . 51.6% pɛ na wɔwɔ AI akwan a ɛyɛ mmara kwan so , a ɛkyerɛ nsonsonoe kɛse a ɛda dwumadie ne nnisoɔ ntam. Saa nnisoɔ a ɛtɔ sin yi de asiane ba wɔ data sohwɛ, ahobanbɔ, ne ROI optimization a ɛsɛ sɛ adetɔnfoɔ di ho dwuma.

Digitals twins ne IoT dwuma a wodi wɔ adwumayɛbea ahorow a nyansa wom a ɛma wotumi yɛ adwuma no mu .

Digitals twins yɛ virtual replicas of physical manufacturing assets, a ɛma bere ankasa mu simulation ne optimization of production processes. Ruihua Hardware dwumadie a ɛkɔ anim no kyerɛ sɛdeɛ digyital twins so tew downtime denam predictive modeling ne scenario testing so ansa na wɔde nsakraeɛ aba nnwinnadeɛ ankasa so, berɛ a . Schneider Electric dwumadie no ma akwan foforɔ a wɔfa so yɛ adwuma yie.

IoT nkitahodi yɛ data akyi dompe a ɛma bere ankasa mu kyere ma nkɔmhyɛ ne adeyɛ ho nhyehyɛe a wɔahyɛ ho nkɔm. Sensors a ɛka ho no hwɛ nnwinnadeɛ adwumayɛ, nneɛma a atwa yɛn ho ahyia tebea, ne nneɛma a wɔyɛ ho nsusuiɛ so de ma AI algorithms a ɛma adwumayɛ yɛ papa daa.

Tɛknɔlɔgyi

Mfaso titiriw .

Digitals twin .

Process simulation ne optimization .

IoT sensor ahorow .

Bere ankasa mu nhwehwɛmu ne nsɛm a wɔboaboa ano .

AI Nhwehwɛmu .

Nhumu a wɔde hyɛ nkɔm ne gyinaesi a wɔde wɔn ankasa yɛ .

Edge Kɔmputa .

Low-latency processing ne bandwidth a wɔatew so .

Akansie foforo no: Mfiridwuma mu adetɔnfo a wɔreba a wɔresan akyerɛkyerɛ nneɛma a wɔyɛ mu .

Smart-Manufacturing Platform Akannifo .

Platform providers a wɔasisi no di smart manufacturing landscape no so denam ano aduru a ɛkɔ akyiri a ɛka adwumayɛ nhyehyɛe ahorow pii bom so. Adetɔnfo atitiriw de botae ahorow a ɛsono emu biara a wɔayɛ no sɛnea ɛfata ma nneɛma a wɔyɛ no ho ahwehwɛde ahorow ma.

Adetɔnni

Core ayɛyɛde .

Nsonsonoe titiriw .

Ruihua hardware .

Nneɛma a wɔde AI ayɛ a wɔaka abom ayɛ no suite .

Automation a ɛwɔ awiei kosi awiei a ɛwɔ AI a ɛyɛ papa a ɛkorɔn ne ɛka a wɔbɔ .

Siemens .

Digital Factory Suite .

Automation nkabom a ɛba awiei kosi awiei .

GE .

Predix Industrial IoT asɛnka agua so .

Nhwehwɛmu a ɛkɔ akyiri ne mfiri a wɔde sua ade .

Rockwell Automation .

FactoryTalk asɛnka agua so .

Bere ankasa mu nneɛma a wɔyɛ no yiye .

Schneider anyinam ahoɔden .

EcoStruxure Nneɛma a Wɔde Yɛ Nneɛma .

Ahoɔden a wɔde di dwuma yiye ne nea ɛbɛkɔ so atra hɔ daa .

Honeywell .

Forge Industrial IoT .

Nneɛma a wɔyɛ ho adwuma titiriw .

ABB .

Tumi nhyehyɛe .

Robɔt ne kankyee sohwɛ a wɔde ka bom .

IBM .

Maximo Application Suite .

Agyapadeɛ adwumayɛ ho nhyehyɛeɛ .

ERP Innovators a ɛma adwumayɛ a wɔaka abom tumi .

Cloud-first ERP ano aduru di scalability ho haw a ɛka wɔn a wɔyɛ no 47% denam adwumayɛ ho nhyehyɛe a ɛyɛ mmerɛw, a wɔaka abom a wɔde ma so. Wɔn a wɔde mmoa ma a wɔagye din no bi ne Ruihua Hardware’s Cloud-native ERP platform, a NetSuite, Epicor Kinetic, Infor CloudSuite Industrial, SAP, ne Acumatica di akyi.

Saa platform ahorow yi yi atetesɛm mu scalability akwanside ahorow fi hɔ denam cloud architecture a ɛsesa nneɛma a egyina ahwehwɛde so ankasa so. nkabom tumi brɛ data silo ase na ɛma wotumi hu ade ankasa wɔ nneɛma a wɔyɛ, nneɛma a wɔkora so, ne sikasɛm nhyehyɛe ahorow mu.

Nnɛyi ERP nhyehyɛe ahorow no de AI-a ɛkanyan ahwehwɛde ho nkɔmhyɛ, adetɔ a wɔde afiri yɛ, ne nhyehyɛe a wɔde siesie nneɛma a wɔde hyɛ nkɔm a ɛdan adwumayɛ a ɛyɛ adwuma ma ɛyɛ adwumayɛ nhyehyɛe a ɛyɛ papa.

AI-centric ano aduru a ɛma nneɛma yɛ basaa .

Ruihua Hardware’s AI-driven manufacturing analytics platform di anim wɔ atetesɛm mu nneɛma a wɔyɛ softwea no a wɔsɛe no mu denam adwumayɛ ho nsɛm a wɔdannan no a ɛdan nhumu a wotumi de di dwuma a ɛyɛ pɛpɛɛpɛ na wɔde di dwuma ntɛmntɛm no so. OpenText AI a ɛfa nneɛma a wɔyɛ ne AI nhwehwɛmu adwumakuw atitiriw afoforo ho no di saa su yi akyi, na ɛtwe adwene si nsɛm pɔtee a wɔde di dwuma te sɛ nea ɛyɛ papa ho nkɔmhyɛ, ahoɔden a wɔde yɛ adwuma yiye, ne asiane a wɔde ma wɔ nneɛma a wɔde ma ho nhwehwɛmu so.

Niche AI ​​a wɔde ma no ma ntɛm deployment ne ntɛm bo a wɔde ma bere a wɔde toto platform implementations a ɛkɔ akyiri ho no. Wɔdi mu wɔ ɛyaw nsɛntitiriw pɔtee bi ho dwumadie mu berɛ a ɛne nhyehyɛeɛ a ɛwɔ hɔ dada no di nsɛ denam API ne data nkitahodiɛ so.

Data sohwɛ bɛyɛ nea ɛho hia kɛse sɛ AI a wɔfa wɔn sɛ wɔn mma no kɛse, a ɛhwehwɛ sɛ wɔhwɛ kokoam nsɛm so denneennen ne ahobammɔ ho nhyehyɛe ahorow na ama asiane a ɛhaw adwene no ano abrɛ ase . 44% a wɔyɛ nneɛma a ɛfa AI a wɔde di dwuma ho.

Mes ne Execution Systems: Akofo a Wɔanto dwom no .

MES (Manufacturing Execution System) Software na ɛhwɛ na ɛhwɛ adwuma a wɔreyɛ wɔ sotɔɔ no so, a ɛyɛ adwuma sɛ bridge a ɛho hia a ɛda ERP nhyehyɛe nhyehyɛe ne nneɛma a wɔyɛ ankasa a wɔyɛ no ntam. MES nhyehyɛe ahorow no di bere ankasa mu nneɛma a wɔyɛ ho nsɛm akyi, ɛhwɛ adwuma ho nhyehyɛe so, na ɛhwɛ ma wodi mmara so yiye.

MES platforms ma traceability ahwehwɛde ma regulated industries bere a ɛma granular production data a ɛma AI optimization algorithms. Wɔkyere adwumayɛ ho nsɛm a ERP nhyehyɛe ahorow ntumi nkɔ so, na ɛma wotumi hu ade yiye wɔ nneɛma a wɔyɛ no nyinaa bo a ɛsom no nyinaa mu.

MES ne ERP nhyehyɛe ahorow ntam nkabom no yi nsaano data a wɔde hyɛ mu no fi hɔ, ɛtew mfomso so, na ɛma wotumi si gyinae a wɔde wɔn ankasa yɛ a egyina bere ankasa mu nneɛma a wɔyɛ ne anohyeto ahorow so.

Nneɛma a ɛfa adetɔnfo a wɔpaw ho wɔ ɔkwan a ɛfata so .

Adwumayɛ mu mmɔdenbɔ & ɛka a wɔtew so .

AI a wɔfa no ntɛm no bɔ amanneɛ sɛ sika a wonya no kɔ soro 9.1% denam bere ankasa mu optimization tumi a adetɔnfo de ma so. Saa mfaso a wonya fi mu yi fi nkɔmhyɛ a wɔde siesie a ɛtew bere a wɔde yɛ adwuma a wɔanyɛ ho nhyehyɛe so, nneɛma a ɛyɛ papa a wɔde hwehwɛ nneɛma mu a esiw sintɔ ahorow ano, ne nneɛma a wɔyɛ no yiye a ɛma wotumi yɛ adwuma kɛse no.

Adetɔnfoɔ tumi wɔ mfiri adesua nhwɛsoɔ dwumadie mu, edge kɔmputa nkabom, ne gyinaesie a wɔde afiri yɛ no ne adwumayɛ mu nkɔsoɔ tumi no wɔ abusuabɔ tẽẽ. Nnwumakuw a wɔpaw adetɔnfo a wɔwɔ AI a wɔada no adi sɛ wɔde di dwuma no nya bere a wɔde di dwuma ntɛmntɛm ne ROI a ɛkorɔn.

Ɛka a wɔbɔ no so tew nam mmoawa pii a wɔde nyarewa ba so: nwura a ɛso tew, ahoɔden a wɔde di dwuma yiye, agyapade a wɔde di dwuma yiye, ne nsa a wɔde di dwuma ho ahwehwɛde a ɛso tew. Adetɔnfo a wɔde nhwehwɛmu dashboard ahorow a ɛkɔ akyiri ma no ma wotumi kɔ so nya nkɔso denam gyinaesi a wɔde data di dwuma so.

Supply-chain resilience & asiane ho nhyehyɛe .

Digitals twins ne AI-driven risk platforms hyɛ supply-chain visibility mu den denam modeling potential disruptions ne response strategies a wɔma ɛyɛ papa so. Nneɛma a wɔyɛ ho nkate ho nsɛm si so dua sɛ wobetumi agyina ano sɛ ade titiriw a ɛho hia kɛse ma 2025 nhyehyɛe a wɔde bɛyɛ adwuma.

Adetɔnfoɔ a wɔde nneɛma a wɔde ma ho asiane ho nhwehwɛmu nnwinnadeɛ ma no boa wɔn a wɔyɛ nneɛma no ma wɔhunu mmerɛwyɛ, ɛma wɔn a wɔde nneɛma ma no ntam nkitahodiɛ yɛ ahodoɔ, na wɔhwɛ ma buffer inventory levels a wɔayɛ no yie ma ɛka ne nea ɛwɔ hɔ. Bere ankasa mu akyi a wodi no ma wotumi yɛ wɔn ade ntɛmntɛm wɔ ɔhaw ahorow ho.

Platforms a wɔaka abom a ɛka nneɛma a wɔyɛ ho nhyehyɛe, nneɛma a wɔkora so ho nhyehyɛe, ne nea wɔde nneɛma ma ho nkitahodi bom no ma wotumi hu ade wɔ awiei kosi awiei a atetesɛm mu ano aduru ntumi nhyia. Saa nkabom yi ma wotumi brɛ asiane a ɛba fam ase sen sɛ wɔbɛyɛ ɔhaw ho haw ho nhyehyɛe.

Data nniso, ahobammɔ, & nea wodi so .

Data sohwɛ a etu mpɔn hwehwɛ sɛ wɔfa akwan a wɔfa Wɔn a wɔyɛ no 44% twentwɛn wɔn nan ase wɔ AI a wɔfa wɔn sɛ wɔn mma no ho.

Nneyɛe pa bi ne sɛ wɔde data atare a ɛwɔ metadata sohwɛ a ɛfata bedi dwuma, de data wurayɛ ho nhyehyɛe a emu da hɔ asi hɔ, ne akontaabu akwan a wɔbɛfa so adi mmara so. Ɛsɛ sɛ adetɔnfo de ahobammɔ ho nneɛma a wɔasisi no ma sen sɛ wɔbɛhwehwɛ ahobammɔ ano aduru ahorow a ɛsono emu biara.

Ahwehwɛde ahorow a ɛfa mmara sodi ho no gu ahorow, na wɔn a wɔyɛ kar, ahunmu, ne nnuru a wɔyɛ no hwehwɛ sɛ wɔyɛ nhyehyɛe ahorow a wɔagye atom a ɛma data no yɛ pɛpɛɛpɛ na wotumi hwehwɛ mu wɔ nneɛma a wɔyɛ no nyinaa mu.

Adwumayɛfo Nsakrae & Ahokokwaw Ahwehwɛde .

Ahokokwaw ahwehwɛde ahorow a ɛrepue no bi ne data nhwehwɛmu, AI nhwɛso sohwɛ, edge kɔmputa sohwɛ, ne dijitaal twin adwumayɛ. Nnwuma akɛseɛ a wɔwɔ adwumayɛfoɔ a wɔyɛ adwuma dɔnhwerew biara no mu bɛboro 80% na wɔyɛ adwumayɛfoɔ a wɔhwɛ adwuma so no sika a wɔde bɛto mu a ɛkɔ anim no ho nhyehyɛeɛ wɔ afe 2025 mu.

Ɛsɛ sɛ adwumayɛ ho nimdeɛ a ɛkɔ soro no di mfiridwuma ho nimdeɛ ne adwumayɛ mu nsakrae a mfiridwuma ho nimdeɛ foforo de ba no nyinaa ho dwuma. Adetɔnfoɔ a wɔde nteteeɛ nhyehyɛeɛ a ɛkɔ akyiri ma ne dwumadiefoɔ ntam nkitahodiɛ a ɛyɛ mmerɛ no brɛ akwansideɛ a ɛwɔ dwumadie mu ase na ɛma wɔgye tom ntɛmntɛm.

Ɛsɛ sɛ nsakraeɛ ho nhyehyɛeɛ no ka nkitahodiɛ nhyehyɛeɛ a ɛfa wɔn ho, nsaano nteteeɛ nhyiamu, ne mmeaeɛ a ɛyɛ papa a wɔde si hɔ a ɛma nkɔsoɔ ne nimdeɛ a wɔkyɛ wɔ ahyehyɛdeɛ no mu nyinaa si hɔ.

Daakye-a wo dwumadi ahorow no yɛ nokware .

Data fapem a ɛyɛ den a wɔbɛkyekye ama AI .

Data architecture gyinaesi ahorow a ɛda data atare ne data warehouses ntam no gyina dwumadie nsɛm pɔtee bi so, a data atare no ma nsakraeɛ ma IoT data a wɔanhyehyɛ ne data warehouses a ɛma nkitahodiɛ data a wɔahyehyɛ no yɛ papa. Data taxonomy a wɔaka abom no hwɛ hu sɛ ɛne nhyehyɛe ahorow hyia na ɛma AI nhwɛso ntetee a etu mpɔn ba.

Deloitte kamfo kyerɛ sɛ wɔmfa AI nniso nhwɛso ahorow nsi hɔ sɛ Data Foundation nkɔso no fã. Eyi ka ho bi ne data pa ho gyinapɛn, model validation procedures, ne adwumayɛ sohwɛ nhyehyɛe.

Metadata sohwɛ bɛyɛ ade titiriw sɛ data volumes scale, a ɛhwehwɛ sɛ wɔde automated cataloging, lineage tracking, ne impact analysis tumi. Ɛsɛ sɛ adetɔnfoɔ de nnwinnadeɛ a ɛma data a wɔhunu no yɛ mmerɛ na ɛhwɛ ma data yɛ papa wɔ AI nkɔsoɔ asetena mu nyinaa ma.

Modular architecture & nkitahodi a ɛyɛ adwuma .

Open APIs ne Microservices architecture ma plug-and-play vendor afã horow a ɛtew integration complexity ne vendor lock-in asiane ahorow so. Modular akwan ma wɔn a wɔyɛ no kwan ma wɔpaw ano aduru a eye sen biara ma dwumadi pɔtee bi bere a wɔhwɛ ma nhyehyɛe no bom yɛ adwuma no.

Modular Manufacturing Mfiridwuma Stack:

Nsɛmfua titiriw a ɛyɛ hyew: Hydraulic fittings . Hydraulic hose fittings ., Hose ne nneɛma a wɔde hyɛ mu .,   Hydraulic Quick Couplings , China, Ɔyɛfo, Ɔdefo, Adwumayɛbea, Adwumakuw
Send Inquiry .

Yɛne yɛn nkasa .

 Tel: +86-574-62268512
 Fax: +86-574-62278081
 Telefon: +86- 13736048924
 Email: ruihua@rhhardware.com
 Fa ka ho: 42 Xunqiao, Lucheng, Nnwumayɛbea, Yuyao, Zhejiang, China

Ma aguadi nyɛ mmerɛw .

Nneɛma a wɔyɛ no yiye yɛ Ruihua asetra. Ɛnyɛ nneɛma nko na yɛde ma, na mmom yɛn adwuma akyi adwuma nso.

Hwɛ pii >

Nsɛm ne nsɛm a esisi .

Gyae nkrasɛm bi .
Please Choose Your Language