Yuyao Ruihua ƒe xɔtunuwɔƒe .
Email:
Views: 9 Author: Nyatakakadzraɖoƒea ƒe Nuŋlɔla Ta Ɣeyiɣi: 2025-09-12 Dzɔtsoƒe: Teƒe
Adzɔnuwo wɔwɔ ƒe mɔ̃ɖaŋununya le ƒe 2025 me la, woɖe AI-ʋuwo ƒe nuwo wɔwɔ le wo ɖokui si, dɔwɔƒewo ƒe ɖekawɔwɔ si me nunya le, kple nudzralawo ƒe hadomeɖoɖo siwo naa asitsatsa me tsonu siwo woate ŋu adzidze la fia. Kple 71% ƒe adzɔnuwo wɔlawo zãa AI kuxiwo gbɔ kpɔnu alo wɔa wo ŋudɔ, hoʋiʋli ƒe nɔnɔmea trɔ ɖe mɔ̃ siwo ƒoa ɣeyiɣi ŋutɔŋutɔ me numekukuwo, beléle na nyagblɔɖiwo, kple ERP ƒe ƒoƒo ɖekae si me kuxi aɖeke mele o nu ƒu ŋu.
Mɔfiame sia si me kɔ la dzro mɔ̃ɖaŋudɔwɔƒe xɔŋkɔ siwo trɔa asi le adzɔnuwo wɔwɔ ƒe dɔwɔnawo ŋu me, tso mɔ̃ɖaŋudɔwɔƒe siwo woɖo anyi abe Siemens kple GE ene dzi va ɖo AI-centric disruptors siwo le dodom abe Ruihua hardware ene dzi. Míadzro alesi ganyawo ƒe akpa gãwo, dijitaal eve ƒe dɔwɔwɔwo, kple dɔwɔlawo ƒe tɔtrɔ ƒe mɔnuwo le nudzralawo ƒe tiatia ŋuti nyametsotso siwo kpɔa ŋusẽ ɖe dɔwɔwɔ nyuie, nuzazãwo ƒe kɔsɔkɔsɔ ƒe tenɔnɔ ɖe nɔnɔme sesẽwo nu, kple hoʋiʋli ƒe ɣeyiɣi didi la hem vɛ.
Xexeame katã ƒe adzɔnuwo wɔwɔ ƒe seselelãme le ƒe 2025 me ɖe ganyawo ƒe nɔnɔme vovovowo si kpɔa ŋusẽ ɖe mɔ̃ɖaŋununya ƒe gadede nyametsotsowo dzi tẽ la fia. PMI ƒe nuxexlẽ siwo li fifia ɖee fia be United States le 49.5, Europa le 49.8, India le 59.2, kple Japan le 48.8, si fia nutome ƒe adzɔnuwo wɔwɔ ƒe dɔwɔna ƒe ɖoɖo vovovowo.
PMI (nuƒlelawo ƒe index) nye ganyawo ƒe dzesi si dzidzea adzɔnuwo wɔwɔ ƒe dɔwɔna, afisi nuxexlẽ siwo wu 50 ɖee fia be kekeɖenudɔwo le eye le anyime 50 do susua ɖa be woaɖe wo dzi akpɔtɔ. Metrics siawo ʋãa mɔ̃ɖaŋununya ƒe gadede asi abe alesi adzɔnuwo wɔlawo le asi siwo me wowɔa nubabla le me la léa ŋku ɖe egbɔkpɔnu siwo doa dɔwɔwɔ ɖe ŋgɔ ŋu.
Adzɔ siwo le dzidzim ɖe edzi le United States ƒe adzɔnuwo wɔlawo ŋu na woƒe susu nɔ viɖe siwo wokpɔna le dɔwɔwɔ me ŋu to nuwo wɔwɔ le wo ɖokui si kple AI zazã me. Dɔwɔƒewo le mɔ̃ɖaŋununya siwo naa dɔwɔwɔ nyuie ƒe ŋgɔyiyi enumake kple gazazã dzi ɖeɖe kpɔtɔ ƒe ŋutetewo ɖo nɔƒe gbãtɔ be woatsɔ axe mɔ ɖe asitsatsa ŋuti nyaƒoɖeamenuwo nu.
AI ƒe xɔxlɔ̃ le adzɔnuwo wɔwɔ me ɖo afisi woawɔ dɔ le vevie, kple . 71% le adzɔnuwo wɔlawo me le veviedodotɔe le AI solutions zazã alo wo zazã me. Esia ma ɖe 27% fifia zãlawo me eye 44% le dɔwɔwɔ ƒe akpa siwo le dɔ dzi me, si ɖe AI ƒe tɔtrɔ ƒe ŋutete ƒe dzesidede le afisiafi fia.
Asitsatsa ƒe ŋusẽkpɔɖeamedzi nye agbɔsɔsɔme: AI xɔlawo ka nya ta be 9.1% gakpɔkpɔ ƒe dzidziɖedzi kple 9.1% viɖe ƒe dzidziɖedzi ne wotsɔe sɔ kple amesiwo menye vixɔnyilawo o le 7.3% gakpɔkpɔ kple 7.6% viɖe ƒe dzidziɖedzi ɖe wo nɔewo yome. Dɔwɔwɔ ƒe vovototo siawo hea hoʋiʋli ƒe nyaƒoɖeamenu vɛ na mɔ̃ɖaŋununya ƒe xɔxlɔ̃ le dɔwɔƒea katã.
Togbɔ be woxɔe se geɖe hã la, . 51.6% koe le AI ƒe aɖaŋu siwo wowɔ le se nu , si te gbe ɖe vovototo gã aɖe si le dɔwɔwɔ kple dziɖuɖu dome dzi. Dziɖuɖu ƒe gbɔdzɔgbɔdzɔ sia ɖea afɔkuwo fiana le nyatakakawo dzikpɔkpɔ, dedienɔnɔ, kple ROI ƒe nyonyome si ŋu wòle be nudzralawo nakpɔ la me.
Digitál twins subɔna abe virtual replies of physical manufacturing assets, si wɔnɛ be wowɔa ɣeyiɣi ŋutɔŋutɔ ƒe nɔnɔmetata kple nuwɔwɔ ƒe ɖoɖowo ƒe nyonyome. Ruihua Hardware ƒe dɔwɔwɔ deŋgɔ ɖe alesi dijitaal venɔviwo ɖea ɣeyiɣi si wozãna ɖe dɔwɔwɔ ŋu dzi kpɔtɔna to kpɔɖeŋuɖoɖo kple nɔnɔme dodokpɔ me hafi wɔa tɔtrɔwo le dɔwɔnu ŋutɔŋutɔwo ŋu, esime . Schneider Electric ƒe dɔwɔwɔ naa mɔnu bubuwo le dɔwɔwɔ ƒe nyonyome ŋu.
IoT kadodoa wɔa nyatakakawo ƒe megbeƒu si naa ɣeyiɣi ŋutɔŋutɔ ƒe xɔxlɔ̃ hena beléle na wo kple wo wɔwɔ ƒe ɖoɖowɔwɔ si wogblɔ ɖi. Sensor siwo do ƒome kple wo nɔewo léa ŋku ɖe dɔwɔnuwo ƒe dɔwɔwɔ, nutome ƒe nɔnɔmewo, kple ewɔwɔ ƒe xexlẽdzesiwo ŋu be woatsɔ ana nuɖuɖu AI ƒe akɔntabubu siwo naa dɔwɔwɔwo nyona ɖe edzi ɣesiaɣi.
Mɔɖaŋu |
Viɖe Gbãtɔ . |
|---|---|
Digitál venɔvi . |
Dɔwɔwɔ ƒe nɔnɔmetatawɔwɔ kple eƒe nyonyome . |
IoT sensorwo . |
Ɣeyiɣi ŋutɔŋutɔ me ŋkuléle ɖe nu ŋu kple nyatakakawo nuƒoƒoƒu . |
AI ƒe numekukuwo . |
Gɔmesese siwo wogblɔ ɖi kple nyametsotsowɔwɔ le wo ɖokui si . |
Edge ƒe kɔmpiuta zazã . |
Nusiwo wowɔna le ɣeyiɣi kpui aɖe me kple bandwidth dzi ɖeɖe kpɔtɔ . |
Mɔ̃ɖaŋudɔwɔƒe siwo woɖo anyi la ɖua dzi le smart manufacturing ƒe nɔnɔme me to egbɔkpɔnu siwo me kɔ nyuie siwo ƒoa dɔwɔwɔ ƒe ɖoɖo geɖewo nu ƒu ɖekae me. Nudzrala xɔŋkɔwo gblɔa asixɔxɔ ƒe nya vovovo siwo wowɔ ɖe adzɔnuwo wɔwɔ ƒe nudidi vovovowo nu.
Nudzrala |
Core ƒe nunana . |
Vovototo vevi aɖe . |
|---|---|---|
Ruihua ƒe xɔtunuwo . |
AI-ʋu si wotsɔ wɔa nu ɖekae ƒe nuwo wɔwɔ ƒe ƒuƒoƒo . |
Nuwuwu-na-nuwuwu ƒe nuwo wɔwɔ le wo ɖokui si kple AI ƒe nyonyome kple gazazã nyuie si de ŋgɔ wu . |
Siemens . |
Digitál Dɔwɔƒe ƒe Suite . |
Nuwuwu-na-nuwuwu ƒe nuwo wɔwɔ le wo ɖokui si ƒe ƒoƒo ɖekae . |
GE . |
Predix Dɔwɔƒewo ƒe IoT Nuƒolanɔƒe . |
Kukuɖenuŋu Deŋgɔwo Kple Mɔ̃ɖaŋununya Ŋuti Nusɔsrɔ̃ . |
Rockwell ƒe nuwo wɔwɔ le wo ɖokui si . |
FactoryTalk ƒe nuƒolanɔƒe . |
Ɣeyiɣi ŋutɔŋutɔ ƒe nuwɔwɔ ƒe nyonyome . |
Schneider Elektrikŋusẽ . |
Ecostruxure xɔtuɖaŋu . |
Ŋusẽzazã nyuie kple nusiwo li tegbee . |
Honeywell . |
Forge Dɔwɔƒewo ƒe IoT . |
Dɔwɔwɔ ƒe dɔwɔƒe ƒe dɔ tɔxɛ . |
ABB . |
Ŋutete ƒe ɖoɖo . |
Robotwo kple ʋuʋu dzi kpɔkpɔ ƒe ƒoƒo ɖekae . |
IBM . |
Maximo Dɔbiagbalẽviwo ƒe Suite . |
nunɔamesiwo ƒe dɔwɔwɔ dzikpɔkpɔ . |
Alilikpo-gbãtɔ ERP ƒe kuxiwo gbɔkpɔnuwo kpɔa scalability dzitsitsi siwo kpɔa ŋusẽ ɖe 47% ƒe adzɔnuwo wɔlawo dzi to dɔwɔwɔwo dzikpɔkpɔ si te ŋu trɔna ɖe nɔnɔmewo ŋu, si wowɔ ɖekae la nana me. Dɔwɔƒe xɔŋkɔwo dometɔ aɖewoe nye Ruihua Hardware ƒe alilikpo me ERP mɔ̃, si kplɔe ɖo kple NetSuite, Epicor Kinetic, Infor Cloudsuite Industrial, SAP, kple Acumatica.
Mɔ̃ siawo ɖea mɔxenu siwo wozãna tsã ƒe scalability barriers ɖa to cloud architecture si trɔa asi le nunɔamesiwo ŋu le wo ɖokui si le didi nu. Nuwɔwɔ ɖekae ƒe ŋutetewo ɖea nyatakakawo ƒe silo dzi kpɔtɔna eye wònana be woate ŋu akpɔ nu le ɣeyiɣi ŋutɔŋutɔ me le nuwɔwɔ, nudzraɖoƒewo, kple ganyawo ƒe ɖoɖowo katã me.
Egbegbe ERP ɖoɖowo dea didi ƒe nyagblɔɖi, nuƒle le wo ɖokui si, kple beléle na wo ƒe ɖoɖowɔɖi si wowɔna le wo ɖokui si si trɔa dɔwɔwɔ siwo wɔa dɔ ɖe ame dzi la wozua dɔwɔwɔ ƒe ɖoɖo siwo wowɔ nyuie, siwo wowɔ nyuie la me.
Ruihua Hardware ƒe AI-driven manufacturing analytics platform xɔ ŋgɔ na tɔtɔ le dekɔnu wɔwɔ kɔmpiuta dɔwɔɖoɖowo to tɔtrɔ xoxo dɔwɔwɔ ŋuti nyatakakawo ɖe dɔwɔwɔ gɔmesese siwo woate ŋu awɔ la me kple nyateƒetoto deŋgɔ kple dɔwɔwɔ kabakaba. OpenText AI na adzɔnuwo wɔwɔ kple AI numekuku dɔwɔƒe tɔxɛ bubuwo zɔna ɖe nɔnɔme sia dzi, eye woƒe susu nɔa zazã ƒe nɔnɔme tɔxɛwo abe nyonyome ƒe nyagblɔɖi, ŋusẽ ƒe nyonyome, kple nuzazãwo ƒe kɔsɔkɔsɔ ƒe afɔku ƒe dodokpɔ ŋu.
NICHE AI dɔwɔƒewo naa dɔwɔwɔ kabakaba kple asixɔxɔ ƒe tsɔtsɔ enumake ne wotsɔe sɔ kple mɔ̃dzidɔwɔwɔwo katã. Wobi ɖe vevesese teƒe aɖewo koŋ gbɔ kpɔkpɔ me esime wole ɖeka kple ɖoɖo siwo li to APIwo kple nyatakakawo ƒe kadodowo dzi.
nyatakakawo dzi kpɔkpɔ va zua nu vevi aɖe ne AI xɔe ƒe dzidzenuwo, si bia be woakpɔ ame ŋutɔ ƒe nyatakakawo dzi kple dedienɔnɔ ƒe ɖoɖo sesẽwo be woatsɔ aɖe afɔku siwo ku ɖe . 44% le adzɔnuwo wɔlawo ku ɖe AI ƒe dɔwɔwɔ ŋu.
MES (Manufacturing Execution System) Kɔmpiutadziɖoɖowo kpɔa dɔwɔwɔ ƒe dɔwɔnawo dzi eye wòléa ŋku ɖe wo ŋu le fiasea me, eye wònyea tɔdzisasrã vevi si le ERP ƒe ɖoɖowɔwɔ ƒe ɖoɖowo kple ewɔwɔ ŋutɔŋutɔ dome. MES Systems léa ŋku ɖe ɣeyiɣi ŋutɔŋutɔ me nuwɔwɔ ŋuti nyatakakawo ŋu, kpɔa dɔwɔwɔ ƒe sededewo dzi, eye wokpɔa egbɔ be wowɔ ɖe nyonyome dzi.
MES platforms na be woate ŋu akpɔ traceability nudidiwo na dɔwɔƒe siwo ŋu wowɔ ɖoɖo ɖo esime wole granular production data si naa nuɖuɖu AI optimization algorithms la nam. Woléa dɔwɔwɔ ŋuti nyatakaka siwo ERP ɖoɖowo mate ŋu akpɔ o la ɖe asi, si wɔnɛ be woate ŋu akpɔ nu bliboe le adzɔnuwo wɔwɔ ƒe asixɔxɔ ƒe kɔsɔkɔsɔ bliboa me.
MES kple ERP ɖoɖowo ƒe ƒoƒo ɖekae ɖea asi me nyatakakawo ŋɔŋlɔ ɖa, eɖea vodadawo dzi kpɔtɔna, eye wònaa woate ŋu awɔ nyametsotsowɔwɔ le wo ɖokui si si wotu ɖe ɣeyiɣi ŋutɔŋutɔ me nuwɔwɔ ƒe nɔnɔme kple mɔxenuwo dzi.
AI xɔla gbãtɔwo gblɔ be gakpɔkpɔ ƒe dzidziɖedzi le mama dedie nu nye 9.1% to ɣeyiɣi ŋutɔŋutɔ ƒe nyonyome ŋutete siwo nudzralawo naa me. Dɔwɔwɔ nyuie ƒe viɖe siawo tsoa beléle na ɣeyiɣi si wogblɔ ɖi si dzi woɖe kpɔtɔ si ŋu womewɔ ɖoɖo ɖo o dzi ɖeɖe kpɔtɔ, numekuku ƒe nyonyome si xea mɔ na nusiwo gblẽ, kple nuwɔwɔ ƒe nyonyome si sɔ gbɔ wu dzi.
Nudzralawo ƒe ŋutetewo le mɔ̃ɖaŋununya ƒe kpɔɖeŋu ƒe dɔwɔwɔ, edge computing integration, kple automated nyametsotso wɔwɔ me tẽ do ƒome kple dɔwɔwɔ ƒe ŋgɔyiyi ƒe ŋutete. Dɔwɔƒe siwo le nudzralawo tiam kple AI ƒe dɔwɔwɔ ƒe ɖoɖo siwo ŋu kpeɖodzi le la ɖoa ɣeyiɣi ƒe asixɔxɔ kple ROI si kɔkɔ wu gbɔ kabakaba wu.
Gazazã dzi ɖeɖe kpɔtɔ dzɔna to vektor geɖe dzi: gbeɖuɖɔ dzi ɖeɖe kpɔtɔ, ŋusẽzazã nyuie wu, nunɔamesiwo zazã nyuie wu, kple asidede nu me ƒe nudidiwo dzi ɖeɖe kpɔtɔ. Nudzrala siwo naa numekuku ƒe dashboard siwo me kɔ nyuie la wɔnɛ be woate ŋu awɔ ŋgɔyiyi ɣesiaɣi to nyametsotsowɔwɔ si wotu ɖe nyatakakawo dzi me.
Digitál twins kple AI-driven risk platforms doa ŋusẽ nusiwo wotsɔna naa amewo ƒe nukpɔkpɔ to tɔtɔ siwo ate ŋu adzɔ ƒe kpɔɖeŋuwɔwɔ kple ŋuɖoɖo ƒe mɔnuwo ƒe nyonyome me. Adzɔnuwo wɔwɔ ƒe seselelãme ŋuti nyatakakawo te gbe ɖe tenɔnɔ ɖe nɔnɔme sesẽwo nu dzi be enye nu vevitɔ na ƒe 2025 ƒe ɖoɖowɔɖi ƒe ɖoɖowɔwɔ.
Nudzrala siwo naa nuzazãwo ƒe afɔku ŋuti numekuku dɔwɔnuwo kpena ɖe adzɔnuwo wɔlawo ŋu wokpɔa afɔkuwo, wowɔa nu vovovowo na nudzralawo ƒe kadodowo, eye woléa be na buffer inventory ƒe seƒe siwo wowɔ nyuie na gazazã kple woƒe anyinɔnɔ. Ɣeyiɣi ŋutɔŋutɔ ƒe kplɔkplɔ ƒe ŋutetewo wɔnɛ be woate ŋu awɔ nu kabakaba ɖe tɔtɔ ŋu.
Nuƒolanɔƒe siwo wowɔ ɖekae siwo ƒoa nuwɔwɔ ƒe ɖoɖowɔwɔ, nudzraɖoƒewo dzikpɔkpɔ, kple nudzralawo ƒe kadodo nu ƒu la naa nukpɔkpɔ tso nuwuwu vaseɖe nuwuwu si teƒeteƒewo ƒe kuxiwo gbɔkpɔnu deŋgɔwo mate ŋu asɔ o. Nuwɔwɔ ɖekae sia wɔnɛ be woate ŋu aɖe afɔku dzi akpɔtɔ do ŋgɔ tsɔ wu be woawɔ xaxa me kuxiwo gbɔ le mɔ si sɔ nu.
Nyatakakawo Dzikpɔkpɔ nyuie bia be woawɔ ɖoɖo ɖe nyatakakawo ƒe hatsotsowo me toto, mɔɖeɖe ɖe ame ŋu ƒe ɖoɖo siwo wotu ɖe akpa dzi, nya ɣaɣlawo ƒe dzidzenuwo, kple sedziwɔwɔ ƒe ɖoɖowo abe ISO 27001 ene dzi. 44% le adzɔnuwo wɔlawo me le hehem ɖe megbe le AI ƒe xɔxlɔ̃ ŋu.
Nu nyuitɔ kekeake siwo woawɔ dometɔ aɖewoe nye nyatakakawo ƒe tawo zazã kple metadata dzikpɔkpɔ nyuie, nyatakakawo ƒe amesinɔnɔ ƒe ɖoɖo siwo me kɔ la ɖoɖo anyi, kple agbalẽdzikpɔkpɔ ƒe mɔzɔzɔwo dzi kpɔkpɔ hena sewo dzi wɔwɔ. Ele be nudzralawo nana dedienɔnɔ ƒe dɔwɔnu siwo wotu ɖe wo me tsɔ wu be woabia dedienɔnɔ ƒe kuxiwo gbɔ kpɔnu vovovowo.
Nudidi siwo ku ɖe sedziwɔwɔ ŋu la toa vovo le dɔwɔƒe, kple ʋu, yamenutome, kple atikewɔƒewo siwo hiã ɖoɖo siwo ŋu woda asi ɖo siwo léa nyatakakawo ƒe blibonyenye kple woƒe kplɔkplɔ ɖe te le ewɔwɔ ƒe agbenɔɣi katã me.
Aɖaŋu ƒe nudidi siwo le dodom la dometɔ aɖewoe nye nyatakakawo me dzodzro, AI ƒe kpɔɖeŋu dzikpɔkpɔ, edge computing dzikpɔkpɔ, kple digital twin operation. Asitsaha gã siwo si gaƒoƒo ɖesiaɖe ƒe dɔwɔlawo le la ƒe 80% kple edzivɔe ɖo dɔwɔlawo ƒe dɔdzikpɔkpɔ ƒe gadede asi deŋgɔwo le ƒe 2025 me.
Ele be upskilling ɖoɖowo nakpɔ mɔ̃ɖaŋununya ƒe ŋutetewo kple dɔwɔwɔ ƒe dɔwɔwɔ ƒe tɔtrɔ siwo mɔ̃ɖaŋununya yeyewo to vɛ siaa gbɔ. Nudzrala siwo naa hehenana ƒe ɖoɖo siwo me kɔ nyuie kple nusiwo wozãna le mɔ si me kɔ nu la ɖea mɔxenu siwo xea mɔ ɖe dɔwɔwɔ nu dzi kpɔtɔna eye wowɔa wo ŋudɔ kabakaba.
Ele be tɔtrɔwo dzikpkp e ooawo nanye dtwo e kadodo e oo, hehenana e d siwo wowna kple asi, kple nu nyuiww e dtwo e oo siwo aʋã amewo be woaw d nyuie wu eye woama sidzedzewo le habba bliboa me.
Nyatakakawo ƒe xɔtuɖoɖo ŋuti nyametsotsowo le nyatakakawo ƒe tawo kple nyatakakadzraɖoƒewo dome nɔ te ɖe zazã ƒe nɔnɔme tɔxɛwo dzi, eye nyatakakawo tawo naa asitɔtrɔ le IoT nyatakaka siwo womeɖo o kple nyatakakadzraɖoƒe siwo naa asitsatsa ŋuti nyatakaka siwo woɖo ɖe ɖoɖo nu la nyona ɖe edzi ŋu. Nyatakakawo ƒe hatsotso ɖeka me tɔwo kpɔa egbɔ be wowɔa nu ɖekae le ɖoɖowo katã me eye wònana AI ƒe kpɔɖeŋu hehexɔxɔ nyuie wɔnɛ be woate ŋu awɔ ɖeka.
Deloitte ɖo aɖaŋu be woaɖo AI dziɖuɖu ƒe kpɔɖeŋuwo abe Data Foundation Development ƒe akpa aɖe ene. Esia lɔ nyatakakawo ƒe nyonyome ƒe dzidzenuwo, kpɔɖeŋu ƒe kpeɖodzinana ƒe ɖoɖowo, kple dɔwɔwɔ dzi kpɔkpɔ ƒe ɖoɖowo ɖe eme.
Metadata dzikpɔkpɔ va zua nu vevi aɖe abe Data Volumes Scale ene, si bia be woawɔ agbalẽ siwo wowɔna le wo ɖokui si, dzidzimewo yometiti, kple ŋusẽkpɔɖeamedziwo me dzodzro ƒe ŋutetewo. Ele be nudzralawo nana dɔwɔnu siwo ana nyatakakawo didi nanɔ bɔbɔe eye woakpɔ egbɔ be nyatakakawo ƒe nyonyome le AI ƒe ŋgɔyiyi ƒe agbenɔɣi katã.
Open APIs and MicroServices architecture na be woate ŋu awɔ plug-and-play vendor akpa siwo ɖea integration complexity kple vendor lock-in afɔkuwo dzi kpɔtɔna. Modular mɔnuwo ɖe mɔ na adzɔnuwo wɔlawo be woatia nyuitɔ kekeake-le-dzi-gbɔkpɔnu egbɔkpɔnuwo na dɔ tɔxɛwo esime wole ɖoɖoa ƒe ɖekawɔwɔ dzi kpɔm.
Modular wɔwɔ mɔ̃ɖaŋununya ƒe ƒuƒoƒo:
Dzudzɔ Hydraulic Leaks Na Good: 5 Aɖaŋuɖoɖo Veviwo Na Vodadamanɔmee Connector Nutrenu
Pɔmpi Klam Takpekpewo: Kalẽtɔ Siwo Womexɔ Ha O Le Wò Piping System .
Crimp Quality Exposed: Ade-side-Afide analysis si dzi màte ŋu aŋe aɖaba aƒui o .
Ed vs. O-ring mo ƒe nutrenu ƒe nutrenu: Alesi woatia hadrolik kadodo nyuitɔ kekeake .
Hydraulic Fitting Face-Off: Nusi Nut la ɖena fiana le nyonyome ŋu .
Hydraulic hose pull-out failure: a classic crimping vodada (kple kpeɖodzi si wokpɔna)
Push-in vs. Compression Fittings: Ale Si Nàwɔ Atia Simplit Pneumatic Connector .
Nusita ƒe 2025 le vevie ŋutɔ na gadede dɔwɔƒewo ƒe IoT wɔwɔ ƒe kuxiwo gbɔ kpɔnu .